Please use this identifier to cite or link to this item: https://repository.monashhealth.org/monashhealthjspui/handle/1/29150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCole T.J.en
dc.contributor.authorDowling J.K.en
dc.contributor.authorMansell A.en
dc.contributor.authorFuller P.J.en
dc.contributor.authorYoung M.J.en
dc.contributor.authorTesch G.H.en
dc.contributor.authorOng G.S.Y.en
dc.contributor.authorMorgan J.en
dc.date.accessioned2021-05-14T09:50:21Zen
dc.date.available2021-05-14T09:50:21Zen
dc.date.copyright2020en
dc.date.created20200822en
dc.date.issued2020-08-22en
dc.identifier.citationJournal of Endocrinology. 246 (2) (pp 123-134), 2020. Date of Publication: August 2020.en
dc.identifier.issn0022-0795en
dc.identifier.urihttps://repository.monashhealth.org/monashhealthjspui/handle/1/29150en
dc.description.abstractMR activation in macrophages is critical for the development of cardiac inflammation and fibrosis. We previously showed that MR activation modifies macrophage pro-inflammatory signalling, changing the cardiac tissue response to injury via both direct gene transcription and JNK/AP-1 second messenger pathways. In contrast, MR-mediated renal electrolyte homeostasis is critically determined by DNA-binding-dependent processes. Hence, ascertaining the relative contribution of MR actions via DNA binding or alternative pathways on macrophage behaviour and cardiac inflammation may provide therapeutic opportunities which separate the cardioprotective effects of MR antagonists from their undesirable renal potassium-conserving effects. We developed new macrophage cell lines either lacking MR or harbouring a mutant MR incapable of DNA binding. Western blot analysis demonstrated that MR DNA binding is required for lipopolysaccharide (LPS), but not phorbol 12-myristate-13-acetate (PMA), induction of the MAPK/pJNK pathway in macrophages. Quantitative RTPCR for pro-inflammatory and pro-fibrotic targets revealed subsets of LPS- and PMA-induced genes that were either enhanced or repressed by the MR via actions that do not always require direct MR-DNA binding. Analysis of the MR target gene and profibrotic factor MMP12 identified promoter elements that are regulated by combined MR/MAPK/JNK signalling. Evaluation of cardiac tissue responses to an 8-day DOC/salt challenge in mice selectively lacking MR DNA-binding in macrophages demonstrated levels of inflammatory markers equivalent to WT, indicating non-DNA binding-dependent MR signalling in macrophages is sufficient for DOC/salt-induced tissue inflammation. Our data demonstrate that the MR regulates a macrophage pro-inflammatory phenotype and cardiac tissue inflammation, partially via pathways that do not require DNA binding.Copyright © 2020 Society for Endocrinology Published by Bioscientifica Ltd. Printed in Great Britainen
dc.languageenen
dc.languageEnglishen
dc.publisherBioScientifica Ltd. (Euro House, 22 Apex Court, Woodlands, Bradley Stoke, Bristol BS32 4JT, United Kingdom)en
dc.relation.ispartofJournal of Endocrinologyen
dc.subject.meshWestern blotting-
dc.subject.meshglucocorticoid receptor-
dc.subject.meshinterleukin 10-
dc.subject.meshinterleukin 1beta-
dc.subject.meshinterleukin 33-
dc.subject.meshinterleukin 6-
dc.subject.meshmacrophage elastase-
dc.subject.meshmineralocorticoid receptor-
dc.subject.meshprostaglandin synthase-
dc.subject.meshtoll like receptor 4-
dc.subject.meshmacrophage-
dc.subject.meshbone marrow derived macrophage-
dc.subject.meshcarditis-
dc.subject.meshDNA binding-
dc.subject.meshgenotype-
dc.subject.meshheart muscle fibrosis-
dc.subject.meshmacrophage cell line-
dc.subject.meshpromoter region-
dc.subject.meshsignal transduction-
dc.subject.meshtransactivation assay-
dc.subject.meshtranscription regulation-
dc.titleNovel mineralocorticoid receptor mechanisms regulate cardiac tissue inflammation in male mice.en
dc.typeArticleen
dc.identifier.affiliationNephrology-
dc.identifier.doihttp://monash.idm.oclc.org/login?url=http://dx.doi.org/10.1530/JOE-20-0161-
dc.publisher.placeUnited Kingdomen
dc.identifier.pubmedid32464598 [http://www.ncbi.nlm.nih.gov/pubmed/?term=32464598]en
dc.identifier.source2007138273en
dc.identifier.institution(Ong, Morgan, Dowling, Mansell, Fuller, Young) Hudson Institute of Medical Research, Clayton, VIC, Australia (Ong, Morgan, Mansell, Fuller, Young) Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia (Ong) Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Murdoch, WA, Australia (Ong) Department of General Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia (Cole) Department of Biochemistry, Monash University, Clayton, VIC, Australia (Tesch) Department of Medicine, Monash University, Clayton, VIC, Australia (Tesch) Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia (Dowling) Royal College of Surgeons in Ireland, Dublin, Irelanden
dc.description.addressM.J. Young, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. E-mail: morag.young@baker.edu.auen
dc.description.publicationstatusEmbaseen
dc.rights.statementCopyright 2020 Elsevier B.V., All rights reserved.en
dc.subect.keywordsCardiac fibrosis JNK Macrophage Mineralocorticoid receptor Non-genomic Nuclear receptoren
dc.identifier.authoremailYoung M.J.; morag.young@baker.edu.auen
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Articles
Show simple item record

Page view(s)

16
checked on Feb 6, 2025

Google ScholarTM

Check


Items in Monash Health Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.