Please use this identifier to cite or link to this item: https://repository.monashhealth.org/monashhealthjspui/handle/1/47596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNgo T.-
dc.contributor.authorNguyen D.C.-
dc.contributor.authorPathirana P.N.-
dc.contributor.authorCorben L.A.-
dc.contributor.authorDelatycki M.B.-
dc.contributor.authorHorne M.-
dc.contributor.authorSzmulewicz D.J.-
dc.contributor.authorRoberts M.-
dc.date.accessioned2022-05-05T01:52:44Z-
dc.date.available2022-05-05T01:52:44Z-
dc.date.copyright2022-
dc.date.issued2022-04-20en
dc.identifier.citationIEEE Transactions on Neural Systems and Rehabilitation Engineering. 30 (pp 803-811), 2022. Date of Publication: 2022.-
dc.identifier.urihttps://repository.monashhealth.org/monashhealthjspui/handle/1/47596-
dc.description.abstractCerebellar ataxia (CA) is concerned with the incoordination of movement caused by cerebellar dysfunction. Movements of the eyes, speech, trunk, and limbs are affected. Conventional machine learning approaches utilizing centralised databases have been used to objectively diagnose and quantify the severity of CA. Although these approaches achieved high accuracy, large scale deployment will require large clinics and raises privacy concerns. In this study, we propose an image transformation-based approach to leverage the advantages of state-of-the-art deep learning with federated learning in diagnosing CA. We use motion capture sensors during the performance of a standard neurological balance test obtained from four geographically separated clinics. The recurrence plot, melspectrogram, and poincare plot are three transformation techniques explored. Experimental results indicate that the recurrence plot yields the highest validation accuracy (86.69%) with MobileNetV2 model in diagnosing CA. The proposed scheme provides a practical solution with high diagnosis accuracy, removing the need for feature engineering and preserving data privacy for a large-scale deployment.Copyright © 2001-2011 IEEE.-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.ispartofIEEE Transactions on Neural Systems and Rehabilitation Engineering-
dc.subject.meshcerebellar ataxia-
dc.subject.meshdata privacy-
dc.subject.meshdeep learning-
dc.subject.meshdiagnostic accuracy-
dc.subject.meshfeature learning algorithm-
dc.subject.meshmachine learning-
dc.subject.meshrange of motion-
dc.subject.meshsignal processing-
dc.subject.meshmotion analysis system-
dc.subject.meshimage transformation-
dc.subject.meshmelspectrogram-
dc.subject.meshmobilenetv2 neurological balance test-
dc.titleFederated Deep Learning for the Diagnosis of Cerebellar Ataxia: Privacy Preservation and Auto-Crafted Feature Extractor.-
dc.typeArticle-
dc.identifier.affiliationPhysiotherapy-
dc.identifier.affiliationAllied Health-
dc.type.studyortrialObservational study (cohort, case-control, cross sectional, or survey)-
dc.identifier.doihttp://monash.idm.oclc.org/login?url=https://dx.doi.org/10.1109/TNSRE.2022.3161272-
dc.publisher.placeUnited States-
dc.identifier.pubmedid35316188 [https://www.ncbi.nlm.nih.gov/pubmed/?term=35316188]-
dc.identifier.institution(Ngo, Pathirana) School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia-
dc.identifier.institution(Nguyen) School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States-
dc.identifier.institution(Corben, Delatycki) Murdoch Children's Research Institute, Parkville, VIC 3052, Australia-
dc.identifier.institution(Horne, Szmulewicz) Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia-
dc.identifier.institution(Szmulewicz) Balance Disorders and Ataxia Service, Royal Victorian Eye and Ear Hospital (RVEEH), East Melbourne, VIC 3002, Australia-
dc.identifier.institution(Szmulewicz) Cerebellar Ataxia Clinic, Alfred Hospital, Prahran, VIC 3004, Australia-
dc.identifier.institution(Roberts) Physiotherapy Department, Monash Health, Clayton, VIC 3168, Australia-
dc.identifier.affiliationmh(Roberts) Physiotherapy Department, Monash Health, Clayton, VIC 3168, Australia-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Articles
Show simple item record

Page view(s)

24
checked on Jan 21, 2025

Google ScholarTM

Check


Items in Monash Health Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.